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Abstract—The creep-hardening constitutive model based on the concept of kinematic hardening
is discussed. The distinction is made between active and unloading creep processes and the
hardening is assumed to depend on two scalar parameters o, and «,, the first representing the
maximal prestress measure, the other corresponding to accumulated measure of unloading events.
The constitutive model is applied to simulate monotonic and cyclic creep deformation in pure
copper tubes subjected to combined tension and torsion at 300°C. The interaction between
monotonic and cyclic hardening and the effect of initial prestress are studied and model predictions
are compared with experimental data.

1. INTRODUCTION

In most phenomenological creep theories for metals[2-9], the usual assumption is made
that the creep rate depends on the stress tensor and on a set of hardening parameters. By
following the plasticity concepts and the isotropic or kinematic hardening rules, it is
assumed that the state of isotropic hardening is represented by a monotonically growing
scalar parameter 4 proportional to the accumulated plastic or viscous strain and the state
of anisotropic hardening is represented by a tensor parameter a interpreted as a “back
stress”. The evolution rule for « may describe both hardening and recovery processes
within the material. The application of several creep-hardening constitutive relations to
simulate creep of 304 stainless stee] under monotonic and repeated loading was recently
presented in [19].

The creep-hardening rule discussed in this paper is based on similar assumptions but
differs from previous formulations in taking account of the memory of maximal prestress
from the past loading history. The measure of maximal prestress is expressed as a
supremum of the scalar norm of the back stress a. The loading processes can therefore
be classified into two groups, namely, those for which the maximal prestress increases and
those for which maximal prestress was reached earlier. The hardening rules are also
different for those two kinds of processes. A similar concept was recently discussed in [1]
for the case of plastic hardening with neglect of viscous effects and applied to simulate
cyclic hardening and softening effects of several steels. The present paper extends this
formulation for the case of creep at elevated temperatures. The complex phenomena
occurring for creep under constant or varying stresses can thus be simulated by applying
the proposed model. The important problem of creep-plasticity interaction and the
associated hardening effects can also be treated within the present formulation, see [20].

A different formulation of viscoplastic constitutive relations applicable both for
monotonic and variable loading was presented in [9, 10]. In [10], the scalar norm of
maximal total strain was used as a measure of maximal prestrain. A general concept of
rate and history dependence in metals was presented in [12] where the importance of
maximal prestress on the subsequent inelastic behaviour was indicated. A two-surface
model of kinematic and isotropic hardening was presented in [13], where besides the yield
surface, an additional hardening surface in the strain space was introduced. This idea was
next extended and modified in order to simulate creep effects in a stainless steel for variable
loading[14]. Finally, the composite or multisurface creep-hardening rules[16~18] provide
a natural measure of maximal prestress and allow for distinction between particular
loading events through loading-unloading conditions for particular surfaces. The present
formulation can be regarded as a modified version of such rules and the measure of
maximal prestress is here expressed in terms of the “back stress” rather than stress itself.
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In Section 2, the main model assumptions and its formulation will be presented whereas
in Section 3 the model will be applied to describe biaxial creep of copper under constant
tension and cyclically varying torsion stress.

2. FORMULATION OF HARDENING RULE
Consider the creep potential in the form

I
n+1

(/‘_a.’)n*l (1)

and the creep rule

. OW of
é —g—p(f a,)"aa forf—a,>0
é€=0 forf—0,<0 (2)

where u and n are the material parameters and f'is a homogencous function of order one
of the “effective” stress § = s — a. Here s denotes the stress deviator, a is the residual “back
stress™ tensor and o, denotes the yield limit. The usual small strain theory is used
throughout the paper. The creep rule (2) implies that there exists an elastic domain
S —0,<0 within which only elastic strain increments occur and a viscous domain
S —0,>0 lying in the exterior of the elastic domain. As we are interested in this paper
in high-temperature creep, it will be set g, =0, thus assuming that the elastic domain
shrinks to a point. However, a more accurate model, applicable to moderate or room
temperature creep would require the assumption of existence of the elastic domain. In
particular, when studying plastic hardening at room temperature, the evolution rule for
o, becomes the most important component of the constitutive model, as it was demon-
strated in [1).
Assume f to be a function of the form

3 in
f=6,=[§(s—¢)-(s—a)] 3

where the dot between two symbols denotes their scalar product (or trace operation for
two tensors). To introduce the measure of maximal prestress, let us introduce, similarly
as in [1] the scalar norm of « in the form

a, = (ga . a)m “)

and the maximal value of a, reached during the creep process will be denoted by «,, that
is

%, =Sup & (f—s) )

O<s<t

During the initial creep process a, increases from its initial value and then a, = a,,, &, = d,,.
On the other hand, when after reaching the maximal value a, = a,, its subsequent value
decreases, a, < a,,, then the maximal value a,, is kept in the material memory and a new
Creep process Commences.

The distinction can therefore be made between two types of creep processes: the active
creep process for which &, = &, a, = a,,, and the creep unloading process for which a, < .
In the following, we shall discuss consecutively the constitutive relations for these two
creep processes.
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For the active creep process, the creep rule (2), in view of (3) takes the form

3s—a)

E=u(f—oq,) o7

(6)

and for o, =0, there is
E=pr136-a) ©

In formulating the evolution rule for a, it can be assumed, similarly as in [8] that this rule
should represent plastic (or creep) hardening and both plastic and viscous recovery
processes, that is

@ = C,% — C%l - C,\% ®)

. 2 12 r,
l=(—é‘-é‘) s 1=J-/1d1 )]
3 0

and C,, C, and C," are material functions of «, and o, to be specified. The first term
of (8) represents a familiar kinematic hardening whereas the two remaining terms
correspond to plastic and viscous recovery. An alternative evolution rule for a was
discussed in [2] where the back stress was assumed to be composed of two portions a, and
a, undergoing recovery specified by two different rules.

In considering the evolution rules for copper, the explicit expression for viscous
recovery term in (8) will be neglected for active creep processes and the rule (8) will be
replaced by a simpler form

where

= C Y% fora,=a,,d,>0 (10)
where
o 6—a
il P Sy (an

is the unit vector specifying the direction of evolution of &. The recovery effect will be
incorporated into the function C, = C,%a,, 6,), so that the steady creep process will be
attained for any stress level.

The active creep process can be represented both in the stress or back stress spaces,
Fig. 1. To indicate the analogy with a multisurface hardening rule proposed in [18],
consider first the representation in the stress space, Fig. 1(a). Consider the yield surface
Jo =0 which is initially centered at the origin 0. When the stress state represented by the
point P, is applied and next kept fixed, the creep process governed by (2) or (6) commences
and the evolution of a governed by (10) occurs. The yield surface translates toward the
stress point P,. Introduce, besides the yield surface, a set of nesting surfaces f; =0,
=0, ... F =0 of the same shape and growing sizes, analogous to those discussed in [18]
for the case of plastic hardening. The consecutive surfaces engage cach other without
intersection and for the active creep process the surface f; = 0 undergoes translation once
it becomes engaged by the surface f;_, = 0. In Fig. 1(a) the nesting surfaces and the yield
surface are tangential at R, and the outermost surface F = ( is centered at 0. This surface
provides a measure of maximal prestress for changing stress state. Consider, for instance,
the case when the stress point is changed to P, and kept fixed at P, for some time. During
the creep unloading process the yield surface will translate inside the domain F <0, and
eventually becomes tangential to the maximal prestress surface F = (. Consider the point
R, on f; = 0 associated with the stress point P,, so that both P, and R, lic on the line 4, P,
connecting the center of f, = 0 with P,. It can be postulated that the instantaneous motion
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Fig. 1. The evolution of the back stress a for stress state at P, with subsequent change to P; and
Py, (a) evolution following from the multisurface hardening mode}, (b) evolution in the a-space.

of R, is directed to the respective point on the consecutive surface having the same normal
direction, that is along R,B’, where 0B’ is parallel to 4, R,. The subsequent creep process
will involve motion of the yield and nesting surfaces lying inside the surface F = 0 and they
eventually become tangential to F = 0 at the point B lying on the radial line OP,. The center
of the yield surface moves along the path 4,4, and the creep unloading process terminates
when the yield surface engages the maximal prestress surface at B.

Let us note that instead of the maximal prestress surface F = 0 in the stress space we
can introduce the maximal loading surface in the a-space, namely

¢o(¢,0)=a,—a,,,=0 (12)
so that for the active creep process there is

o, = Uy, o, =6d,>0 (13)
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and the diameter of y, = 0 is monotonicalily growing. This representation seems convenient
since the evolution rules for & can now be formulated independently of the relative
configuration of nesting surfaces. In the following, we shall develop our model by using
the representation in the a-space.

Referring to Fig. 1(b), it is scen that the active creep process terminates at 4, when
the stress state is changed from P, to P, and subsequently kept fixed at P,. Assume that
the elastic domain f;, < 0 is shrinked to a point, thus o, = 0. The creep unloading process
starts when the a-path moves into the interior of the domain enclosed by the maximal
loading surface ¥, = 0, that is a, starts to decrease from its maximal value a,, reached at
the point A. To specify the measure of creep unloading, let us introduce another surface
within this domain, similar to the surface ¥, =0 and tangential to it at A, thus

Yi(a, @) = B @—a") (@ - ato“’):r/2 -a"=0 (14

where a"” denotes the center position of the surface (14) and " is proportional to its
radius. For the creep unloading path A, B,, the surface y, = 0 passes through A, and B,,
hence

= &) (@~ ) — @O =0
= ™) = ™ — @) =0 as)
and from (15) it follows that
3(az—a,) (@5—a,) 3
m_ [? = [2,m
H \/; 2@z ~ay) v, 2r (1)

a =, —v,rO amn

where a; and a, denote the positions of the instantaneous back stress at the point B, and
at the contact point A4,, whereas v, denotes the unit vector along 0,4,, Fig. 1(b). The radius
of the surface ¥, =0 is denoted by ). Let us note that the surface ¢, = 0 is similar to
the maximal loading surface ¥, = 0 and coincides with it when &’ = 0 and a,"’ = a, . The
relations (17) and (18) can be regarded as evolution equations for a," and &, expressed
in terms of &, and a,;. Though they are not rate equations, the complete description is
provided when the evolution rule of a, is formulated as the rate equation.
The first creep unloading event is defined by the inequalities

i">0, a®<a,® (18)
The second creep unloading event commences when at some point B there is a,"’ < 0 and

the a-path penetrates into the domain enclosed by the surface y, =0. Similarly, as
previously, let us construct a new surface

b, 2®) = B (@ —a®)- (@ ao"’)]m ~2®=0 (19)

passing through B, and C and being tangential at B, to ¥, = 0, Fig. 1(b). The second creep
unloading event continues when

4950, a®<q® (20)

and for ,® = &,V the surface ¥, = 0 merges with the surface §, = 0. For the subsequent
path DE in the exterior of y, =0, the second creep unloading event is erased from the
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material memory. For the a-path EF in the exterior of y, =0, the active creep process
continucs and the relations (7) and (10) apply.

The relations (16)-(20) should be complemented by the evolution rule for a during the
creep unloading process. This rule will provide, in particular, the instantaneous value a,
in (16) and (17), when &, and ay" are specified. Whereas the creep rule (6) or (7) remains
valid, the evolution rule for « is modified for the creep unloading process, namely

a'(u) = C,(“)(a,,,, a')ﬂ(l) + a'(l), for o, < Uy, du >0 (21)

where g is the unit vector. The first teem of (21) represents the unloading recovery term
that vanishes when «, = a,,, whereas the second term represents the continuing hardening.
It can be speculated that the instantaneous direction of p™ coincides with the vector s — a
for all values of stress. However, following the discussion of evolution rule in the stress
space for multisurface model, Fig. 1(a), it is assumed that the vector §* coincides with
s — a only for stress states lying inside the surface , = 0 whereas for stress states in the
exterior of this surface, the a-path of the unloading recovery is directed to a point B’ lying
on ¥, =0 and the radial line 0P, connecting the center of ¥, with the stress point. It can
therefore be assumed in the evolution rule (21) that

s—a 3
B = 6% G=a" foro,= <5s-s)”2< ®,,
v §—a
o e-amp ©ro>o @
where
a=s:—~. (23)

This evolution rule is illustrated in Fig. 1(b). For the stress point at P,, the a-path 04,
follows the radial line OP, until the point A4, is reached. When the stress state is
subsequently changed and is represented by a point P,, the creep unloading process occurs.
The first term of (21) predicts the a-path following the line 4, B, B’ terminating at B’ lying
on the radial line 0P, and on the surface i, = 0 whereas the second term of (21) predicts
the evolution direction along the line connecting P, with the instantaneous a-point. As the
first term predominates, the a-path A,B,B” departs slightly from the line 4,B8,B’. The
subsequent evolution of a follows the line B”P,. If the stress point is changed to P, with
a represented by B,, the respective evolution of @ would follow the path B,E’ whereas the
first term of (21) would correspond to the path B,E, Fig. 1(b). The evolution paths of «
in Fig. 1(b) can be regarded as simplified version of paths following from the multisurface
translation rule, Fig. 1(a). Whereas the unloading path 4,4, in Fig. 1(a) is curvilinear, the
path A4,B, in Fig. 1(b) is assumed as a straight line.

The function C,* occurring in (21) should satisfy the condition that ¢ = d® for
a,, = o,. This function is therefore expressed in the form

C\“ = B(a, — o)t (24)

where B and &k arc material parameters.

To complete the formulation of our model, the evolution rule (10) should be more
precisely specified. This rule should describe the material hardening during both active and
unloading processes. Assume that for the active creep process a,, tends to its asymptotic
value o, being in general a function of the effective stress o,. Thus, for any fixed stress level,
the material tends toward a steady creep process occurring at the constant rate of creep.
Here o, resembles much the concept of a friction stress discussed by Parker and
Wilshire[11]. If on the other hand, the active creep process is interrupted and the creep
unloading process proceeds, the value of a, can further be modified due to additional
hardening. To introduce a proper measure for hardening during the creep unloading
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cvenls, let us introduce the accumulated measure of a defined as follows

k
a,= Y 4o fora,<a, (25)

im

where da,'? is the maximal value of a,® attained during the ith creep unloading event. On
the other hand, when the creep unloading process is interrupted and the active process
proceeds for which a, grows further, a new count of a, is made for successive creep
unloading events. Assume that for the active creep process, the evolution rule (10) takes
the form

"=A@®~a,) p" 4 o=a, d,>0 (26)

where A is the material parameter. For the subsequent creep unloading process (a, < «,,),
the value o is assumed to be modified by the following rule

o =a®- G@)=a ;—}% @

where § and a are the material parameters and G(a,) =1 for a, =0, G(a,) = (8/y) for
a,— 0. Thus for a,—co, there is a/” = «™(B/y) and if (8/y) > 1, the asymptotic value of
the friction stress is augmented due to hardening developed during creep unloading events.
If now the creep loading process is next followed, a new value o/ determined by (27) is
substituted into (26), thus

0= 4 (@ —ay)- g4 da,>0 (28)

and similarly, the new value a" is substituted into (27) to compute «® during the
successive creep unloading process. The interaction between active and unloading creep
events can therefore be studied by following the rules (26)-(28). Physically, it can be
speculated that the active loading process creates a dislocation structure which is
afterwards slightly modified due to motion of mobile dislocations during the creep
unloading events. This modification is roughly accounted for in the rule (27).

When the creep process proceeds initially under high stress which is subsequently
reduced, it is possible that the value of a, reached during the first period is higher than
the value of a, during the second period. This situation may occur when a, is a monotonic
function of the effective stress, a,=afc,). The evolution rule (26) would then imply
diminuation of «,, during the second period, that is recovery of a,, to a lower value. It can
be expected that such recovery (similar to softening effect occurring during cyclic loading
at room lemperature) occurs actually in metals but it is not clear how significantly is may
reduce the previous hardening. Neglecting this effect for copper, it is assumed that

¥ = 0, df= 0 when [ a (29)

In other words, when a, = a,, reaches a value that is higher than the asymptotic friction
stress a, corresponding to lower values of the effective stress during subsequent stages of
active creep, the recovery of a,, is neglected.

Let us now provide a brief recapitulation of model equations. As we have seen, there
are three major components of the model, namely creep, hardening evolution and memory
rules. We shall consecutively outline governing equations for these rules.

(i) Creep rule. As we set o, = 0, that is neglect the elastic domain, the creep rule obeys
eqn (7), that is

Eeur6-a) (30)

where [ =&, is specified by (3) and u is the material parameter. This creep rule is valid
for both active and unloading creep processes.
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(ii) Hardening evolution rule specifies the evolution of the back stress a. This evolution
rule is different for active and unloading creep processes. There is & = & for a, = a,,, &, > 0
and ¢ =& for a, <a,, or a, =a,, d, <0. For the active creep process, according to (26)
and (27) there is

d(”:A(af—a,,,)'ﬂw'l', af> &y
i0=0 2 <t G1)

where
4=0o0,) G(a,) (32)

is the friction stress corresponding to the maximal value of a,, reached in the creep process
under constant stress. The function G(x,) specified by (27) accounts for additional
hardening during creep unloading processes. In fact for the first active creep process there
is G(a,) = 1 and a,is specified by the applied stress level. On the other hand, for unloading
creep processes, there is an additional growth of a, due to variation of G(a,). For
consecutive active and unloading creep processes the relation (32) applies with &, measured
from zero for each new unloading event. Thus, for the second unloading event, there is

a/(z) = af(O)(a.') . G(aa,) . G(a,z) 33)

where a, and a,, are the values of «, reached during the first and the second unloading
event. The value & is next used in (31) in the evolution rule for active creep loading.

For creep unloading events, the evolution rule (21) applies with B specified by (23)
and C,™ specified by (24), thus

@ = B(a, —a) - BY +d® (34)

and &“ = a® when a, = a,.

(iii) Memory rule. This rule is specified by introducing the maximal loading and
unloading surfaces (12) and (14), (19). For the active creep process, only the instantaneous
value of a,, and the value of a; specified by (32) are remembered whereas for the unloading
creep event, the value of a,, specifying the maximal prestress and the values o, &,
specifying the actual unloading event are remembered. Moreover, the past unloading
events of greater magnitude than the recent event are stored in the memory, that is the
pairs ,®, a,® for which ¢, ® > a9

3. DESCRIPTION OF CYCLIC CREEP OF COPPER UNDER
COMBINED TENSION AND TORSION
Let us now apply the derived constitutive relations to the case of plane stress with two
non-vanishing stress components g, and 7, referred to a Cartesian x, y-system. Such stress
state occurs in a thin walled tube subjected to tension and torsion and model predictions
will be compared with test results.
The creep potential is now expressed as follows

= H T+l
w o a. (35)
where
o-t = [(ax - ax)z + 3(Txy - a,\:v)z]l/2 (36)
and the creep rule (7) takes the form
éxc =u- &(n—-l : 2(0’,( - ax)’ ’};xy =u- 5:—‘ "o (Txy - axy)' (37)

Alternatively this creep rule can be expressed in a form applied usually in literature, namely
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é Oy 0o € ) Oy

where 0, and ¢, are the material parameters. The maximal prestress is now expressed in
terms of the norm

a, = (a2 + 3, )2, (39

Consider first the creep for the uniaxial stress state, for instance, in tension and
compression. For the active creep process, the evolution rule (28) can be expressed as
follows

dx“) =4 (af( O axm) ' é.v:c (40)
which after integration for constant «® provides the finite relation
a,® = a1 — exp (— A¢,9)). (41)

It is seen that for ¢ —o0 there is a,—a® and C,"—0 whereas for ¢,'=0 there is
C,\" = Aa/® and a, = 0. Similarly, for the creep unloading process, according to (34) there
is

6= — ﬁ B(an— o) + 4.0 “

3.1 Experimental results and their analysis
Creep tests were conducted for commercially pure copper} at constant temperature

300°C. Thin-walled tubular specimens (outer diameter 25.4 mm, thickness 4 = 1.7 mm and
gauge length L = 38 mm) were subjected to tension-torsion in a special purpose testing
machine. Details of the testing apparatus, in which the tension and torsion loading systems
were decoupled using an air bearing, and of strain measurements are described in [15]. The
material parameters occurring in the creep law (38) were identified, using standard
procedure based on Norton’s law

€ oy

é (“oﬂ) “3)

applied to constant-stress creep tests under biaxial stress state (tension—torsion). The
experimental effective stress-effective strain rate data are shown in Fig. 2 and the creep
parameters mentioned above were found, to be:

n=12, Oo=2843MPa], &=4.2x 10-3%/h).

The experimental data shows the scatter of max. 5% in stress level, which is less than typical
scatter usually occurring in creep data and may be due to material variations, specimen
bending and inaccuracy in temperature control. Because of this effect, the stress correction
in theoretical solutions was taken into account. To reconcile creep law (43) with the
expression from (38) namely:

&_ (%Y
(o5

it is assumed that a,= 7 - g,, where 75 is a constant parameter and ¢, has the same value

st;oug& pitch high conductivity copper of 99.9%, purity manufactured to British Standard Specification
B.S.2873 CIDI.
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Fig. 2. The experimental dependence of creep rate on the stress level for copper.

in (43) and (44). Requiring (43) and (44) to predict the same creep rate, it is obtained that
o, = oon(1 — 11). In other words, the value of g, is obtained from the respective value of
oov of Norton's law.

As it was mentioned before, a, can be interpreted as the friction stress (¢, =1n - o)
extensively studied in [19]. It was found that for polycrystalline copper at 413°C under
uniaxial tension g, = 30 + 70[MPa] the value of  equals 0.37 < 0.26 and for the stress level
similar to that applied in our experimental programme there is n ~ 0.35. So, in spite of
difference in testing temperature, a/®=0.35-05, was assumed in the present work.
Experimental results, as it will be shown later, confirm validity of this assumption.

The uniaxial stress—strain curve for specimens tested at 300°C at a constant strain rate
€. =10"*s~! is shown in Fig. 3.

In order to verify the present model, three experimental creep programmes were carried
out. Let us describe them consecutively.

(i) Programme }. Monotonic and cyclic creep hardening

This programme consisting of eight steps, is shown in Fig. 4. In step 1, the material
was instantaneously subjected to combined stress o, = 22.723[MPa], 1,, = 7.712{MPa] until
the steady creep state was reached. Subsequently, during four consecutive steps, the shear
stress was cyclically varied between the values + 7.712[MPa] until the steady creep was
reached at each step. During the step 6, the higher stress g, = 26.3[MPa} was applied and
during subsequent steps 7 and 8 the shear stress was respectively 7,, = —8.76{MPa] and
1,, = 8.76[MPa)]. Steady creep was attained at the end of each step. The presented
programme can therefore be divided into four stages:

—stage 1: initial loading, step 1, o, = 26.355[MPa],

—stage 2: cyclic loading in torsion, steps 2-5, ¢, = 26.355[MPa],
—stage 3: subsequent loading, step 6, o, = 30.366[MPa],

—stage 4: cyclic loading in torsion, steps 7, 8, g, = 30.366[MPa].

This loading programme is schematically shown in Fig. 4(a, b) and both the experi-
mental and predicted response curves ¢, = ¢,(r) and y,, = 7,,(t) are shown in Fig. 4. The
experimental results exhibit instantaneous strain increments after each reversal of shear
stress. It is believed that these increments are not only associated with the elastic strain
increments of the specimen but also with property of testing apparatus. Because the
proposed theory does not contain the effect of time independent strains and because testing
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Fig. 3. Uniaxial stress-strain curve for copper tested at 300°C at constant strain rate ¢, = 10~*sec™".

procedure did not allow for precise measurement of such strains during reversals of shear
stress, this effect is not included in the experimental curves. The time independent strains
are presented only for initial loading (step 1) and the calculated creep curve is therefore
shifted by instantaneous term according to the data shown in Fig. 3.

The material parameters for theoretical calculation of the creep loading and unloading
processes were assumed as follows: 4 = 20 (eqn 26), § = 0.02, y =0.0145 (eqn 27), B =7,
K = 1.5 (eqn 34) when calculating stresses in [MPa].

The initial value of a, =0 was changed to a, = a/® = 9.22[MPa] during the initial
loading process (eqn 26) and subsequently value a/® was changed due to cyclic process
(eqn 27), so that a/ = 10.54[MPa] at the end of step S. It corresponds to a = 0.4024,,
and during the subsequent loading, step 6, there is o = 0.402¢, = 12.21[MPa]. Following
1,, cyclic changes, steps 7 and 8, o increase to a/ = 13.58[MPa] at the end of step 8.
It is seen, that experimental creep curves are fairly well predicted by the present model.
The predicted and measured creep rates at the steady state for subsequent steps are
presented in Table 1. The highest discrepancy between predicted and measured rates occurs
for the step 8. This may be due to intervening creep damage effect which was neglected
in our model.

Assume the Robinson’s damage accumulation rule

D= lg (:—'l) =Y Di 6)

where D denotes the total damage, ¢, is the period of maintaining stress o,, ¢, is the rupture
life corresponding to o,. Applying this rule, it can be deduced that the step 8 of creep begins
at the time equal to 0.63, and in view of the analysis of copper damage under biaxial stress
state[20], it is seen that the tertiary portion of the creep curve can be expected at this step.

Figure 5 shows the evolution of the back stress a during the consecutive creep steps.
Initially, during the stage 1, the a-path coincides with the line 0-1. When the shear stress
is reversed, the a-path follows the line A-B, Fig. 5(d). This rule is corroborated by the
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On the creep-hardening rule for metals 479
Table 1. Steady state creep rates for particular loading steps

Experiment Theory

Period|Time Stress state £,10? i-”-m2 (E=F MO0
h MPa [$/n]) | [¥/n] | [%/h

1 72 0,=22.723 G, =24.99 0.21 | G.24 0.2
Tuy= 7.712  § =26.355

2 47 | (=22.723 0.16 | 0.20 0.17
T,y=-7.712

3 47 | O,=22.723 0.14 | 0,17 0.14
Tay= 7.712

4 48 | y=22.723 0.12 | 0.16 0.12
Tuy=-7.712

5 48 | Oy=22.723 0.11 | 0.15 0.1
Tyy= 7.712

6 77 | G=26.300 (}=28.933 | 0.38 | 0.43 0.3
Tuy= 8.760 G =30.356

7 48 | ©,=26.300 0.29 | 0.33 0.23
%--8.760

8 48 | Gy=26.300 0.31 | 0,39 0.18
T,y 8760

calculated a-path from the creep rule (34) by using measured creep rates, Fig. 5(¢). In fact,
the predicted a-path first moves from A in almost vertical direction and bends towards
a radial line 0-2 in the vicinity of B. Figure 5(f) shows the evolution of a during the stage
3 of subsequent loading.

(i) Programme 2. Effect of overstress
During this programme, the material was first subjected for the period of 19 hr to
biaxial creep under higher stress state o, =30.711{MPaj, 1, =10.393[MPa),
. = 35.597[MPa] which resulted in creep strains much higher than those occurring at the
end of the first step in Programme 1. Next, Programme 1 was executed. The following

stages can therefore be distinguished:

—stage 1: Initial loading, step 1, o, = 30.711[MPa],
1,, = 10.393[MPa),
o, = 35.597[MPa)
—stage 2: Unloading to 6, = 26.355[MPa], step 2,
—stage 3: Cycling loading in torsion, steps 34, g, = 22.723[MPa],
1,,= £ 7.712{MPa],
—stage 4: Subsequent loading, step 5, g, = 30.366[MPa],
—stage 5: Cycling loading in torsion, steps 6-7, o, = 26.300[MPa],
17,, = 18.760[MPa].

During the last four hours of the first stage (initial loading) the strain rate of
¢, =0.14[%/h]) was measured. It corresponds to the stress state g, = 29.484[MPa),
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1., = 9.973(MPa], o, = 34.17[MPa] which is about 4% less than the applied stress state.
Introducing the proper corrcetion of the stress state the calculations, using the same
material parameters as in Programme 1, were performed. Figure 6 shows experimental and
predicted creep curves.

At the end of stage 1 there is a,, = @, = a,= 0.350, = 11.96{MPa] and when the specimen
is unloaded to g, = 26.355[MPa] (after correction ¢, = 25.3[MPa])), step 2, the predicted
value of «,= 0.35, g, = 8.856[MPa] is lower than a,= a,, rcached during the first stage.
Therefore ¢, = 0, d,= 0 according to (29) and only the evolution of « corresponding to
the first term of (21) occurs. The evolution of « is shown in Fig. 7 and for the consecutive
creep steps Table 2 provides the steady state creep rates for particular steps. It is seen that
now creep rates are several times smaller than the respective rates for the same steps of
Programme 1. This is due to initial overstress period during which a high value of
ay = o,= 11.96[MPa] is attained and no further hardening nor relaxation occurs during
subsequent cyclic loading.

(iii) Programme 3. Effect of overstress, second programme

This programme is similar to Programme 2. The material was first subjected for the
period of 68 h to biaxial creep under stress state o, = 26.3[MPa], 1,, = 8.76[MPa] followed
by unloading to ¢, = 22.723[MPa}, 7, = 7.712[MPa] and cycling loading in torsion, Fig.
8. The following stages of experiment can therefore be distinguished:

—stage 1: initial loading, step 1, g, = 30.366{MPa]

—stage 2: unloading to ¢, = 26.355[MPa}, step 2

—stage 3: cycling loading in torsion, steps 3-6 (¢, = 22.723, 7,, = 1£7.712)
—stage 4: loading to initial stress state, g, = 30.366]MPa], step 7.

The strain rate é, = 4 x 107%[%/4] for the steady state creep in stage 1 was measured.
It corresponds to the stress state g, = 24.985[MPa}, 1,, = 8.32[MPa], o, = 28.844[MPa]
which is about 5% less than applied. As before, such stress state correction is taken in
theoretical approach. Experimental results and predicted creep curves are shown in Fig.
8. During the initial loading, stage 1, &, reaches the value o, = a,= 10.1[MPa] and when
the specimen is unloaded to ¢, = 26.355[MPa] (corrected value o, = 25.04[MPa}), step 2,
the predicted value of a, = 8.864[MPa] is lower than a, = a,, reached during the first stage.
Therefore it is set & = 0, d,= 0 and only the evolution of « corresponding to the first term
of (22) occurs. Table 3 provides the steady state creep rates for particular steps. (For the
steps 3-6, only the values of €, are presented. It was found that the axial curve ¢,(¢) reaches
the steady state, after torsion change, earlier than the shear creep curve y,,(). During such
short cycle period (48 h) the steady state was clearly seen for €,.) Creep rates at the stage
3 are five times smaller than the respective rates for the same step (1) of Programme 1.
As before, this effect is due to the initial overstress and the prior creep hardening of the
material.

4. CONCLUDING REMARKS

In the present model, the concept of kinematic hardening is used and the maximal
prestress norm a,, provides the measure for active and unloading creep processes. Whereas
the creep rule remains the same for two classes of processes, the evolution rules for « are
different. The hardening and recovery phenomena are incorporated into the evolution rules
and the interaction between monotonic and cyclic hardening can be simulated by using
the effective and the accumulated scalar parameters «,, and a,. The steady creep process
is thus dependent on the loading history, in particular, on the cyclic creep process
proceding the subsequent monotonic loading.

The experimental results and the model predictions are in fairly good agreement. The
fundamental idea of this model, namely the memory of maximal prestress, provides sound
description of creep effects for complex loading history. This is clearly seen when
comparing experimental and theoretical steady creep strain rates for different loading
programmes and steps shown in Tables 1-3. The effect of memory of maximal prestress
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Table 2. Steady state creep rates for successive loading steps of Programme 2

On the crecp-hardening rule for metals

Experiment {Theory
Period|Time Stress state €, 10|, .102(5';,-1-')):0
(n] [MPa] (%/n] |(%n] | Ga/m]
1 19 | G=30.711  (=33.778
Ty=10.395  § =35.597
2 49 0,-22.723 O',-Zh.990 0.040| 0,048] 0,033
Tay= 7,712 G +26.355
3 70 q-22.723 0.043 { 0.058 | 0.033
txy"'7‘712
4 46 0;-22.723 0.042 | 0.061 | 0.033
I,,y- 7.712
5 47 0, =26.300 q-28.933 0.143 {0,162 | 0.22
Toy= 8,760  §=30.366
6 u7 Gx'26'3°° 0.113 } 0,150 j 0,22
'I:,,--e.760
7 47 U,=26.300 0.146 |0.185 | 0,22
Tyy= 8.760

Table 3. Steady state creep rates for particular loading steps.

Experiment Theory
Period } T4 s
2 [hi” tro[g. ]atato €107 [0y 107 fEur
(%} | (% ]| [%/B
1 68 O‘= 26.3 O1= 28.953 OM 0046 0.40
Ty= 8.76 0= 30.366
2 24 Ox= 22,723 0= 24099 | 0,051 | 0.058 | 0,078
Tay=  7.712 G= 264355
3 25 C,= 22,723 0.06 0,078
txy= '7-712
4 24 G,= 22,723 0.058 0.078
txy; 70712
5 24 Oy= 22,723 0.057 0.078
txy' =7¢712
6 24 Ox= 22,723 0,055 0,078
T'.W- 7.712
7 48 Ox= 26.3 Oy = 28,933 | 0,35 |0.41 |0.40
Ty= 8.76 G = 30,366
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can be found also in experimental data reported in [11] for polycrystalline copper at 413°C
under uniaxial stress state. Using the approach of this work, good correlations can be
found between experimental and theoretical results.

However, the description of primary creep during initial loading could not be described
sufficiently well (Programmes 1-3, step 1). This is mainly due to simple relations describing
this creep process (eqn 26). It is believed that this description can be improved provided

more experimental results for transient creep under multiaxial stress state become
available.

Similarly the description of primary creep during cyclic torsion is not fully satisfactory,
especially for higher stress levels (Fig. 4, steps 7, 8; Fig. 6, steps 6, 7).

However, it is believed that the main features of creep process under complex loading
histories are simulated with sufficient accuracy and further refinements together with new
experimental programmes will be discussed in separate papers.
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